

Programming Windows Applications for Multiple Languages 1

Programming Windows Applications for

Multiple Languages

Jean-Paul Bleau

Ordinateurs Laval Inc.

CA-World 2000

eBusiness Solutions in Internet Time

JV165SN

Introduction

When developing software, the designer has to think “international” to extend his market and get a bigger
customer potential. The International Customer will look for features like local language support, support for
Windows International Settings and ability to support more than one language at a time.

This session will look at how to use stored text strings and messages, maintain different language data and the
user interface. We will also have a look at the Windows settings and Unicode or double-byte characters (DBCS).

When designing your application, keep the application and user interface components separate, because
independent components make the application easier to localize and maintain. For example, with separate
components, you do not have to browse the source code to localize interface elements. You can reduce the cost
of developing an international application and bring it to market more quickly by designing it as an international
application initially, rather than modifying it for international use later.

Using Data Driven Labeling

Data driven labeling has been the standard method to create multi-lingual CA-Clipper® applications. This method
can still be used for Windows applications, but the string tables are most effective and have a better integration
into the Windows platform.

Why data driven over string table?

The string table is for storing string text, that’s all. If you need to store other information with your string, the
data driven approach becomes more profitable. If you think of languages that use the right-to-left writing, you
need to define different coordinates for the start of the label. Also, using data driven logic you can group all your
strings in one record with as many fields as you have languages defined.

2 JV165SN

Store the text and the coordinate for the labels.

In CA-Clipper®, using coordinates within the data driven definition was quite easy in the following form:

@ FIELD->Lin,FIELD->Col SAY FIELD->Msg

With CA-Visual Objects®, it is quite different, because you have to deal with the resources inside your window.
You have to retrieve your data and coordinates at instantiation of the windows. It would look like this:

p := Point{_FIELD->X,_FIELD->Y}

d := Dimension{_FIELD->SzX,_FIELD->SzY}

cMsg := _FIELD->Msg

oMyFT := FixedText{SELF,1,p,d,cMsg}

Here you can see a new parameter that can be saved in your data driven file: the size (Dimension) of the text.
This can be important if you use some language that translates to very long string that cannot fit inside your
defined window. You just have to draw it smaller to fit the space allocated.

Another way to store information along your text inside the string table is to use embedded data inside your
message. To retrieve your message you will need to use a user defined function (UDF) to control the way data is
stored into your string. You can use separators inside your string to separate the different information like
position and size. Then your function could retrieve the first 3 characters and translate them to the X dimension
parameter. The same can be done with all the other parameters that have been stored within the string. The most
important thing is to define your own standards as to how to store the string and always keep these standards
when creating your data.

Creating constants to identify your labels.

You need a way to access your strings. It could be a string table DLL or a database containing your text; you still
need a key to find it. With the database approach, you need the key to search for the desired string using a seek
method within an indexed file. Numeric constants could be used as in string tables, but I suggest storing your
numeric keys in a character field using STR() for indexing reasons. If you want to use a numeric constant as with
DLL string tables, you can create defines for your constants for readability within your code. Put all the defines
in a single library; each database or DLL should have its own definitions for the constants. Then attach the
definitions’ library to your application.

Writing generic functions to retrieve the labels.

In order to work with your string table or your database containing your text, you have to create your own generic
functions to read the information and return it to your application. If you keep a certain standard in your
applications, you will be able to use the same functions to retrieve your strings in all of them. These functions can
be created inside a personal library of functions you will use in all your future development. You need to create a
function where you will send a key (the constant) and a language, so the function will return the desired string. It
could be something like this:

FUNCTION StrSearch(nKey, cLanguage)

LOCAL cRetString := “” AS STRING

LOCAL nX := 0 AS INT

LOCAL nY := 0 AS INT

SY_SELECT(“strings”) // open the file

strings->(DBSEEK(STR(nKey)))

Programming Windows Applications for Multiple Languages 3

IF strings->(FOUND())

 nX := strings->Xvalue

 nY := strings->Yvalue

 DO CASE

 CASE cLanguage == “F”

 cRetString := strings->MsgFrench

 CASE cLanguage == “E”

 cRetString := strings->MsgEnglish

 CASE cLanguage == “S”

 cRetString := strings->MsgSpanish

 ENDCASE // any other language…

ENDIF

RETURN {nX, nY, cRetString}

This function can be personalized to suit your specific needs. You can add as many languages as you need. You
could also use more generic fields like:

cRetString := strings->Msg1

This way language 1 can be any language. You could add X and Y language specific coordinates. When you have
such functions, your biggest problem will be to build and maintain the string database.

The previous example is good for multiple languages during the same session or location. If you only need one
language at all time, you only need 1 message field and create many DBF specific to the language. All depends
on your needs and on the application’s specifications.

Placing the label on the window.

In a generated window, the fixed texts are defined within a Windows Resource definition. In our case, we need to
create the fixed text after the instantiation of a window. It could be placed inside the PostInit() method of the
window. This method is called at the end of the Init() method. It is acting as a subclass of the window. It could
look like this:

METHOD PostInit() CLASS MyWin

LOCAL p AS POINT

LOCAL d:=Dimension{10,10} AS DIMENSION

LOCAL aMsg := {} AS ARRAY

aMsg := StrSearch(I_MYWIN_FT1, cLang)

p := Point{aMsg[1],aMsg[2]}

oMyFT := FixedText{SELF,1,p,d,aMsg[3]}

RETURN self

In this example, the I_MYWIN_FT1 is the constant you must define as a numeric that represents the key field to
search for in the strings' database. You can then add other functionality like dimensions. In this example, the
variable cLang is a global representing the user language. This variable can be stored in the user’s .ini file and
then retrieved directly by the StrSearch() function, eliminating a global and a parameter to the function call.

4 JV165SN

Using DLL String Tables

In CA-Visual Objects the visual editors support reading the HyperLabel properties, Caption, Description, and
HelpContext, from a string table. Instead of entering strings for these properties, you can enter a parameter string
enclosed in angle brackets that will generate a lookup operation in a string table based on a unique ID. The string
takes on the following form (note that the angle brackets are required):

<[Default Value], StringID, [Module]>

In this case, Module means the Windows EXE or DLL file within which the string resource resides. If Module is
omitted, then the current EXE is used. For example, you might enter the following for the Caption of the File
menu:

<"&File", MyFileString, MyLanguage>

The generated code, when you use a parameter string, includes a call to the LoadResString() function. For the
example given above, the call is:

LoadResString("&File", MyFileString, MyLanguage)

The LoadResString() function allows you to easily read information from a string table in your CA-Visual
Objects® application. String tables are defined via the RESOURCE statement using the STRINGTABLE
keyword and are compiled, like all resource entities, by the Windows resource compiler.

In a CA-Visual Objects® application, you can declare as many string table resource entities as you like. However,
when the application is built, all of these are combined into a single string table, allowing only one table in each
executable file or DLL. This means that within an application and across its library search path, string identifiers
in string table resource declarations must be unique. Note, however, that another module (such as a DLL)
referenced by an application can also have a string table, which is why LoadResString() allows you to specify
which module to reference. Identifiers need only be unique within a module (that is, an .EXE or .DLL file).

This example illustrates a technique for looking up an object's HyperLabel:Caption property using a string table.
Using this technique facilitates internationalization of an application by isolating the natural language portion of
the application that needs to be translated into a string table:

oDCMyControl:HyperLabel := HyperLabel{#MyControl, LoadResString("&File",

MyFileString, MyLanguage),,}

Then, in your start module, add the following:

GLOBAL hLibHndl AS PTR

GLOBAL MyLanguage AS STRING

METHOD Start() CLASS App

…

 IF … // it's French

 MyLanguage := "MYFRENCH.DLL"

 ELSEIF … // it's German

 MyLanguage := "MYGERMAN.DLL"

 ENDIF

 hLibHndl:= LoadLibrary(MyLanguage)

 …

RETURN NULL_STRING

Supprimé : ¶

Programming Windows Applications for Multiple Languages 5

Then, in the closing of the apps, do not forget to put a call to:

FreeLibrary(hLibHndl)

Then create a library just for the defines. This library will be attached to the apps and to each string table DLL.
See the section “Creating constants to identify your string”.

Format of a string table DLL.

The code for the MYFRENCH.DLL string table would be as follows:

RESOURCE French STRINGTABLE

BEGIN

 MyFileString, “&Fichier”

 MyCloseString, “&Fermer”

 MyNameString, “Nom”

 …

END

The code for the MYENGLISH.DLL string table would be as follows:

RESOURCE English STRINGTABLE

BEGIN

 MyFileString, "&File"

 MyCloseString, “&Close”

 MyNameString, “Name”

 …

END

Note: The RC compiler does not offer a line-continuation symbol for strings in string tables. To force a carriage
return into a long line of text, use one of the methods described below.

 One method is to force the carriage return using \012\015 (octal representation of line feed / carriage return
control characters). The following example demonstrates the use of \012\015 and should be considered to be on
one continuous line:

RESOURCE English STRINGTABLE

BEGIN

IDSLONGSTRING, "This is a long line of text so I would like \012\015 to force a

carriage return."

END

Another method of forcing a carriage return is to press ENTER and continue the line on the next line. The
following example will force a carriage return after the word "like". The string should be considered to be on one
continuous line except for the return after the word “like”:

RESOURCE English STRINGTABLE

BEGIN

IDSLONGSTRING, "This is a long line of text so I would like

to force a carriage return"

END

Note: There is a 255-character limit (per string) in a string table. If you try to use the \n or other \ characters, the
RC compiler will ignore them.

6 JV165SN

Storing your string in different DLLs.

In order to distribute your language specific application, you have to create one string table DLL for each
language. The string table DLL can be created by following these steps:

1. Click on the “New Application” button and choose the “Next” button.

2. In the Application Name and Type fields, enter your DLL name (like “English”), click on the radio button
for DLL, and then click on the “Next” button.

3. In the User Interface window, click “Yes” for "Do you want to provide your own user interface code?" Then
answer “No” for the Terminal window. Here you do not need the GUI Classes or the Terminal Classes. Click
“Next”.

4. In the Data Access window leave all buttons blank; it will not access data at runtime. Click “Next”.

5. For Language Style, I suggest choosing Strict and leaving the Debug button blank. Click “Next”.

6. In the Path for .EXE or .DLL field, enter the full path and file name you want for your DLL.
Ex.:C:\DEV\English.DLL. Click “Next”.

7. Leave What Libraries Will Your Application Use? blank for now, unless you already created your Defines
library, and then add it to the left in Include in my Application. Click “Next”.

8. In the User Defined Commands dialog, just click on “Finish” to continue. You now have a new DLL called
English (or whatever name you gave it).

9. You will now open “Module 1,” or create a module if it is not created, and give it a significant name like
“English String Table”. Then open the module by right-clicking on it and choose “Edit all source in
module”.

10. Inside the Source Code Editor, enter your string table using the following example format:

RESOURCE English STRINGTABLE

BEGIN

 MyFileString, "&File"

 MyCloseString, “&Close”

 MyNameString, “Name”

 …

END

11. When you are finished entering the strings, save your work and exit the Source Code Editor. If your Defines
library is not created, wait until you have it before compiling and linking your DLL. You have to return to
the DLL properties and add the Defines library. Look in the next section for information on defining
constants.

Creating constants to identify your strings.

With a string table, you absolutely need a numeric constant, but you can use defined constants for readability
inside your code. A string table is stored in a DLL. Each of the DLLs should have an external library for the
definition of the constants. This way, you use the same defines for the DLL and the application. You just have to
include it inside the library's property sheet for the application or the DLL property dialog. Only after this library
is included in your application and the string table DLL will you be able to compile and link without defines
errors.

Programming Windows Applications for Multiple Languages 7

The steps for creating a Defines library are as follows:

1. Click on the “New Application” button and choose the “Next” button.

2. In the Application Name and Type fields, enter your library name (like “String Table Defines”), click on the
radio button for Library, and then click on the “Next” button.

3. In the User Interface window, click “Yes” for "Do you want to provide your own user interface code?" Then
answer “No” for the Terminal window. Here you do not need the GUI Classes or the Terminal Classes. Click
“Next”.

4. In the Data Access window, leave all buttons blank; it will not access data at runtime. Click “Next”.

5. For Language Style, I suggest choosing Strict and leaving the Debug button blank. Click “Next”.

6. What Libraries Will Your Application Use? should always be blank. Click “Next”.

7. In the User Defined Commands dialog, just click on “Finish” to continue. You now have a new library called
String Table Defines (or whatever name you gave it).

8. You will now open “Module 1,” or create a module if it is not created, and give it a significant name, like
“Defines”. Then open the module by right-clicking on it and choose “Edit all source in module”.

9. In the Source Code Editor, enter the defines using the following example format. Each define MUST be
unique, having a different number. The number itself is not important, its uniqueness within the file is.

DEFINE MyFileString := 100

DEFINE MyCloseString := 101

DEFINE MyNameString := 500

10. When you are finished entering the defines, save your work and exit the Source Code Editor. You have to
return to the application and the DLL property sheet and add the Defines library. You will then be able to
compile and link your DLL and application.

Using the strings inside a window.

The CA-Visual Objects® Window Editor lets you load text from a string table. To load text from a string table
rather than hard coding the text by entering a string in the Caption property, enter:

<[Default Value], StringID, [Module]>

The angle brackets are required as part of the entry. This causes the Window Editor to generate code to load the
caption from a string table, using the LoadResString() function. The Default Value is a string that's displayed if
the StringID cannot be found in the string table. If this parameter is omitted, it is the same as passing a NULL-
STRING. The StringID is the unique identifier in a string table. The Module parameter is the DLL or EXE file
that contains the string table. If this parameter is omitted, LoadResString() assumes the string table is in the
current EXE or DLL file. Anytime < ... > is used for a text string, the Window Editor generates the code to read
the text from a string table.

If you want to manually create the code, just assign the return value of the LoadResString() function to the
caption or fixed text like this:

Self:Caption := LoadResString(“”,,StringID, StrTableDLL)

8 JV165SN

Using the strings inside a menu.

The CA-Visual Objects® Menu Editor also lets you load text from a string table. To load menu captions from a
string table rather than hard coding them by entering a string in the Caption property, enter:

<[Default Value], StringID, [Module]>

The angle brackets are required as part of the entry. This causes the Menu Editor to generate code to load the
caption from a string table, using the LoadResString() function. The Default Value is a string that's displayed if
the StringID cannot be found in the string table. If this parameter is omitted, it is the same as passing a NULL-
STRING. The StringID is the unique identifier in a string table. The Module parameter is the DLL or EXE file
that contains the string table. If this parameter is omitted, LoadResString() assumes the string table is in the
current EXE or DLL file. Anytime < ... > is used for a text string, the Menu Editor generates the code to read the
text from a string table.

String Tables to reduce your code size.

When you are storing strings in external DLL's, it provides a much greater ease of converting text into other
languages. It also helps reduce the sizes of the code and data sections in the CA-Visual-Objects® application. If
all your strings are stored inside a DLL, the .EXE file will be much smaller. This is true if you clear or replace all
the default values in your call to LoadResString() with a null string.

Using DLL string tables slightly slows down the initial loading of forms, and the overall performance of your
program might suffer if you remove all strings from it. For example, performance might suffer if the program
searches for strings while inside a loop. This is the price to pay for internationalization. This is related to the
speed of the CPUs, which are faster and faster these days.

Getting Help for Translations

If you live in the United States and you do not know the language or the culture of the country in which you want
to sell your software, you will need help from somebody who knows the language, but also the culture, politics
and religions, which are very important. You also have to be careful when developing the application and follow
these rules:

� When you create messages in your application, English text strings are usually shorter than equivalent text
strings in other languages. The following table shows the additional average growth for strings, based on
their initial length.

English length

(in characters)

Additional growth for

localized strings

1 to 10 200%

11 to 20 100%

21 to 30 80%

31 to 50 60%

51 to 70 40%

over 70 30%

Programming Windows Applications for Multiple Languages 9

� Also, when designing messages, avoid constructing strings dynamically. For example, if your program
displays this:

There are 10 records in the report

do not place two substrings in the table and build the message like this:

cmessage := cSubStr1 + Str(nRecs) + cSubStr2

This can cause headaches in languages where the word order is different from English. This might be a
better solution:

Number of records in the report: 10

� For the same reason, do not generate plurals by adding “s” to the singular.

� Also, be careful not to translate strings that are used only internally, like field names, the names of files, and
the keywords in INI files. Translating these items can cause all kinds of problems if files are shared between
different versions of the program.

Doing all translations simultaneously.

The best way to handle the translation is to build the application using a master string table with your native
language, and then copy this string table to other files to submit them for translation. If you try to do it during
development, you can get in trouble synchronizing translations and coding changes. One easy way to do it is the
following:

1. Select your string table module and right-click on it. Then, select Edit All Source in Module.

2. From the Source Code Editor, select File and Export.

3. In the Save As… dialog, enter “English” in the File Name SLE. Press the Save button.

4. Repeat steps 2 and 3 with each language name as file name, for as many languages as you want to translate.

5. You now have text files you can submit to a translator. He can replace the English text inside the quotation
marks with the translated text. Be sure to instruct the translator not to remove the quotations marks and not
to translate the constant defines. Be sure also that the translator uses the good codepage while writing.

6. Once you have your translated table, you can import it into a new DLL inside CA-Visual Objects. Refer to
“Storing your string in different DLLs.” for directives, and just replace step 10 with the following: Select
Edit All Source in Module, then File and Import your new file. If your codepage is different from the one
used in the country, some characters may appear “bizarre”. This is normal, but the good character will be
displayed when running on the good codepage.

7. You can now add the Defines library to the DLL property, compile and link this DLL. You now have a DLL
to distribute with your application.

10 JV165SN

Ask the end users for the best translation.

Sometimes, it is hard to find good translations in your local premises. You could try to find beta testers in the
target country to help you fix translation errors. This way, you could be sure your program fits into cultural,
political and local religious issues. You have to be sure that no part of your application conflicts with the local
culture or religion or politics. You can get into big trouble and lose sales if you shock your customers. Be sure to
have more than one person involved in translation and that they are not related. Some big companies have had
some big troubles with subversive translations in the past.

Using CompuServe or the Internet to get help.

One other great source of help is online services where so many people are ready to help you. People from
around the world can give you hints on cultural or local issues and marketing ideas. Just find a good forum or
newsgroup and ask.

Getting it from a translation professional.

One more expensive way to get translations done is with the help of professional translators. You could also ask
your local language schools or university where to find resources. Sometimes they can suggest students that could
handle the job for less money than professionals. You can also find translation professionals on CompuServe,
where a lot of them have accounts.

Windows International Settings

Each version of Windows has its own configuration for international issues. In Windows 3.1x®, the settings are
stored in the file WIN.INI. In Windows 95®, they can be accessed in the WIN.INI file or from the Windows
Registry. In Windows 95® or NT®, they can be accessed via the Regional Icon in the Control Panel. The icon
looks like the planet Earth. When you double-click on it, you discover the following:

1. Regional Settings. In the list lox, you can select the language and country you want to set as regional default
settings for this computer. Defaults will change the way programs display and sort dates, times, currency and
numbers.

2. Number. In this property sheet, you can change the default set by the language you selected. You can change
the decimal symbol, the number of digits after decimal, the digit grouping symbol (thousands), number of
digits in a group, the negative sign symbol, the negative number format, the display leading zeroes, the
measurement system and the list separator.

3. Currency. In this property sheet, you can change the default set by the language you selected. You can
change the currency symbol, the position of the currency symbol, the negative number format, the decimal
symbol, the number of digits after decimal, the digit grouping symbol (thousands) and the number of digit in
the group (thousands). These are mostly the same properties as in the Number property sheet.

4. Time. In this property sheet, you can change the default set by the language you selected. You can change
the time style, the time separator character, the AM symbol and the PM symbol.

5. Date. In this property sheet, you can change the default set by the language you selected. You can change the
short date style, the date separator character, and the long date style.

On all the property sheets, you have a sample line to show you the result of your settings. All of these settings can
be found in the WIN.INI file under the [Intl] section with the appropriate Entry name for it.

Programming Windows Applications for Multiple Languages 11

WIN.INI entries in the International section.

Entries in the [International] Section in WIN.INI.

Entry Description

icountry Country code (usually the same as the country's telephone code). Canada is the only exception
since it has the same telephone country code as the U.S. The country code for Canada is 2,
U.S. is 1.

scountry Country name as a string.

slanguage Three-letter code indicating the National language code selected by the user (for example,
FRA = French, ENU = US English).

sShortDate Short date format (for example, mm-dd-yy).
M = 1-12
MM = 01-12
D = 1-31
DD = 01-31
YY = 00-99
YYYY = 1900-2099

sLongDate Long date format (like sShortDate, but also supports days of week, month names, and other
elements).
M = 1-12
MM = 01-12
MMM = Jan-Dec
MMMM = January-December
D = 1-31
DD = 01-31
DDD = Mon-Sun
DDDD = Monday-Sunday
YY = 00-99
YYYY = 1900-2099

itime Time format (O = 12-hour clock, 1 = 24-hour clock).

stime Character used to separate the hours and minutes, and the minutes and seconds in the time
string (:)

sll59 Trailing string used to denote times before noon (for example, "AM").

s2359 Trailing string used to denote times after noon (for example, "PM"). If the 24-hour clock is in
force, the string can be used to denote the time zone (for example, "PST").

iTLZero If 0, leading zero in hours field is suppressed.

scurrency Currency symbol for the selected language.

Icurrency Position of currency symbol.
0 = before the amount “$1”
1 = after the amount “1$”
2 = before the amount with an intervening space “$ 1”
3 = after the amount with an intervening space “1 $”

iCurrDigits Number of digits after the decimal point in a currency amount.

12 JV165SN

Entry Description

iNegCurr Format for negative currency amounts.
0 = “($l)”
1 = “-$1”
2 = “$-l”

sthousand Thousand separator. (,)

sdecimal Decimal point character.

idigits Number of digits after the decimal point in a number.

iLZero If 0, zero to the left of the decimal point is suppressed in numbers between -1.0 and +1.0.

slist This is the character to be used to separate different elements in a list. This value MUST be
different from the one for the decimal separator in the sDecimal entry.

imeasure Measurement system.
0 = Metric
1 = English

Regarding sLongDate, CA-Visual Objects® does not support this setting, so if you want to display dates in this
way, you will have to read sLongDate and do the formatting yourself.

Windows 95® is available in the following local languages. The value column represents the 3-letter codes for the
sLanguage variable in WIN.INI:

Value Description

DAN Danish

NLD Dutch

DEU German

ENG English (International)

ENU English (U.S.)

ESN Modern Spanish

ESP Spanish

PTG Portuguese

FIN Finnish

NOR Norwegian

SVE Swedish

FRA French

FRC Canadian French

ISL Icelandic

ITA Italian

 Arabic

Programming Windows Applications for Multiple Languages 13

Value Description

 Czech

 Hungarian

 Basque

 Polish

 Catalan

 Greek

 Japanese

 Turkish

 Chinese

 Hebrew

 Korean

 Russian

 Thai

These are the possible Values of sLanguage in WIN.INI. These settings indicate the driver used for collation purposes, not the language in which
Windows itself is running.

Any changes in WIN.INI under the [Intl] section will be in effect for all versions of Windows 3.1x® and
Windows 95® that continue to use this file for configuration purpose. You will have to restart Windows for the
new settings to take effect.

Registry sections related to International Settings.

Although the Registry replaces the basic function of the initialization files used in earlier versions of Windows,
the SYSTEM.INI, WIN.INI, and WINFILE.INI files still appear in the Windows directory. These files continue
to be used for compatibility with earlier Windows-based applications and device drivers. For example, entries in
WIN.INI and SYSTEM.INI created by Win16-based applications are not updated in the Registry, because such
applications do not know how to access the Windows 95® Registry.

If you install Windows 95® as an upgrade to Windows 3.1®, some INI file settings are copied into the Registry,
including settings from CONTROL.INI, PROGMAN.INI, SYSTEM.INI, and WIN.INI.

Some INI file entries are not moved to the Registry, but remain in the INI file for compatibility with Win16-
based applications. Most of these entries can be changed without editing the INI files by using the graphical tools
provided with Windows 95®. However, some INI entries cannot be set using the Windows 95® user interface.
These entries are required for some applications to function properly, but should not need direct modification by
users.

14 JV165SN

When you use the Regional settings in the Control Panel, the registry and WIN.INI are updated automatically.
The registry entry for International Settings is:

Hkey_Current_User\ Control Panel\International

Under this key, you can find the default country coded under the entry “locale”. If you change any of the default
values in the Regional settings, they will be reflected under the same entry name as in WIN.INI. If you use the
default, they do not appear and they are stored internally with the “locale” country code.

Note: Modifying the Registry is hazardous; please be sure that you know what you are doing when changing the
values and be sure to do a backup of two particular registry files before experimenting. These two files are
USER.DAT and SYSTEM.DAT and they have System, Hidden and Read-only attributes.

Dates and time format.

In America, we use the familiar mm-dd-yy format for dates, while dd-mm-yy is the norm in Europe and in the
Province of Quebec. Some other countries prefer yy-mm-dd. The separator symbol varies, too. For example,
some regions use a forward slash rather than a hyphen.

If Setlnternational(#Windows) is in force, you do not need to take any special action to handle these differences.
All CA-Visual Objects® date-handling functions will recognize the sShortDate entry in WIN.INI, which in turn
determines the local date format.

CA-Visual Objects® time handling functions are all sensitive to the WIN.INI settings (itime, stime, sll59, and
s2359). For example, Time() returns the system time in 12-hour or 24-hour format, depending on the setting of
itime.

Currencies, numbers and amounts.

If English-speaking countries all use a period as a decimal point and a comma to separate thousands, many
countries do the reverse. There are also countries that use a space as the thousand's separator. The easiest way of
handling these variations is with picture clauses, which are used with the Transform() function and FieldSpec
properties. Consider the following code:

nValue := 12345.6789

cVar := Transform(nValue,“99,999.99”)

In the U.S., this would display "12,345.68" but in Europe the result would be "12.345,68".

This behavior depends on three settings: sThousand, sDecimal, and iDigits. You can override them by calling
the CA-Visual Objects® functions shown in “Overriding the Windows settings.”

Programming Windows Applications for Multiple Languages 15

When dealing with amounts of money, you can determine the local currency symbol by reading sCurrency from
WIN.INI. Keep in mind that it might consist of two or even three characters (for example, "Esc" is the
Portuguese Escudos). Also, it might appear either before or after the amount and it might be separated from the
amount by a space. To confuse matters further, some countries use parentheses to indicate negative values,
others use a minus sign; some place the minus sign before the currency symbol and others insert it between the
symbol and the number. Unfortunately, CA-Visual Objects® will give you no help in dealing with these
exceptions. You will have to read the iCurrency and iNegCurr entries from WIN.INI and handle the necessary
formatting in your code using user-defined functions.

For example, a valid picture format would be:

999,999,999.99

Picture template strings in this format will allow the end user to alter the entries in Windows International
Settings that the developer cannot control. This makes the actual thousand and decimal separators used in the
Picture Template string simply place holders. These are not the actual characters that will be used. It will use the
character specified in the Windows settings.

Measurement system.

The setting for the Measurements system is used mainly to determine what the user wants as a unit of measure for
length or for capacity. For example, you should use this setting to set a ruler in your application. A setting for
Metric will put centimeters on the ruler. A setting for English will put inches. It is useful information for
applications using this type of data.

Overriding the Windows settings.

CA-Visual Objects® has several functions for overriding the time and amount-related WIN.INI settings. You can
also use these functions to interrogate the settings without having to read WIN.INI directly.

Function Overrides

SetAMExt() sll59

SetAMPM() itime

SetDecimal() idigits

SetDecimalSep() sdecimal

SetPMExt() s2359

SetThousandSep() sthousand

SetTimeSep() stime

CA-Visual Objects®
 functions for overriding WIN. INI settings.

All of these functions, except SetAMExt() and SetPMExt(), also return the current setting of the corresponding
item. To find the current settings of sll59 and s2359, use GetAMExt() and GetPMExt(), respectively.

16 JV165SN

Configuring and Using the International Support of Windows 2000

and the Windows 2000 MultiLanguage Version

The Microsoft Windows 2000 family of operating systems offers support for the languages and cultural
conventions used in approximately 120 international locales. No matter whether you're using the English version
or the Arabic version, you'll find you can still input, process and display text in Greek, Japanese, Korean or any
of the other languages supported in Windows 2000.

What is the Windows 2000 MultiLanguage Version?

The Windows 2000 MultiLanguage Version is a separate, standalone release of Windows 2000, which will ship
as both Professional and Server editions. It allows the user interface language of the operating system to be
changed according to the preferences of individual users. This allows large corporations to roll out Windows
2000 worldwide with a single installation job. Local users can then select the user interface language, or it can be
set by Group Policy for Organizational Units.

The Windows 2000 MultiLanguage Version allows users of different languages to share the same workstation;
one user might choose to see system menus, dialogs and other text in Japanese, while another user logging onto
the same system might prefer to see the corresponding text in French.

Note: The Windows 2000 MultiLanguage Version is NOT:

• A replacement for completely localized different language versions of Windows 2000 (the installation
language is English, so files such as INFs and the registry remain in English).

• The only version of Windows 2000 to allow the input, processing and display of other languages in
applications like word processors. Rather, this ability is a core feature of every Windows 2000 version,
including the Windows 2000 MultiLanguage Version.

• A retail product. It is only sold through Volume Licensing programs like Microsoft Open License Program
(MOLP / Open), Select, and Enterprise agreements.

The following text will help guide you through the process of setting up and configuring your Windows 2000
system to use whichever languages and regional settings you need.

Basic concepts.

This document introduces some of the key concepts you'll need to understand as you configure the multilingual
and international settings of the Windows 2000 family of operating systems.

Language Groups

Language groups are central to the international support provided in Windows 2000. There are 17 language
group modules, each of which is a collection of all the files and settings necessary to support a given set of
languages and locales. Some language groups, such as Greek, contain support for only one locale / language.
Others, such as the Western Europe & US language group, provide support for many different languages and
locales. Only the Western Europe & US language group is installed by default (the other modules can be installed
according to demand).

Programming Windows Applications for Multiple Languages 17

Language Groups determine which locales and languages can be used on a system. The appropriate language
group must be installed before a language can be input, processed or displayed, and before locale settings can be
specified. You can find a complete chart of the Windows 2000 language groups and the languages / locales they
support in our List of Language Groups.

Locales

In Windows 2000, locales are settings which reflect languages and cultural conventions as they are used in
different parts of the world -- "German_Swiss" perhaps, as opposed to "German_Standard". Several different
kinds of locales are supported:

User Locale

The user locale is a per user setting which determines the formats used to display dates, times, currency, and
numbers, and the sorting order of text. A user locale is specified for each and every account created on a
machine. During unattended installations the user locale is specified as a four-digit hexadecimal value: 0411 or
0c0a, for example.

System Locale

The system locale is a system-wide setting which affects all users of a machine. It determines which codepages
and associated bitmap font files are used as defaults for the system. These codepages and fonts enable non-
Unicode applications to run as they would on a system localized to the language of the system locale. ONLY
non-Unicode applications are affected by this setting. During unattended installations the system locale is
specified as a four-digit hexadecimal value: 0411 or 0c0a, for example.

Input Locale

Input locales are pairings of a language with an input method (which might be a particular keyboard layout, an
Input Method Editor, or speech-to-text converter). An input locale describes the language being entered, and how
it is being entered. During unattended installations input locales are specified as a pairing of a four-digit
hexadecimal locale value with a keyboard layout: 0436:00000409, for example.

User Interface (Menus and Dialogs) Languages

The Windows 2000 MultiLanguage Version includes user interface language (MUI) modules in addition to the
standard Windows 2000 Language Group files. The MUI modules, one for each of the 24 user interface
languages supported, contain the resources necessary to display the menus, dialogs and Help files of the system
in the given language. Before a user interface language can be used the appropriate Language Group must be
installed.

ID Values

In Windows 2000 and the Windows 2000 MultiLanguage Version all the Language Groups, locales and user
interface languages are represented by ID numbers, rather than by names. When installing the system in
unattended mode, you should refer to the ID for each entity. You can find lists of all the IDs supported in
Windows 2000 linked to in the sidebar at right.

18 JV165SN

Configuring the system during setup.

How to Install the Windows 2000 MultiLanguage Version from the Command Line

To facilitate in quiet mode installations, the MUI setup program (muisetup.exe) accepts parameters entered at the
command line. This can be useful either during an unattended installation of the Windows 2000 MultiLanguage
Version, or simply during the addition and/or removal of user interface languages on the system.

To use these command line parameters, use the command line to navigate to the directory containing the
muisetup program, and enter muisetup.exe followed by any of the following accepted switches:

-i (specifies the user interface language(s) to be installed)

-d (specifies the default user interface language (applied to all new user accounts and used in places such as the
Winlogon screen))

-u (specifies the user interface language(s) to be uninstalled)

-r (specifies that the reboot message should not be displayed)

-s (specifies that the installation complete message should not be displayed)

The -i, -d and -u switches take languages as four-digit hexadecimal LANGID values. LANGIDs should be
separated by a space as in the following example:

e:\muisetup.exe -i 0411 0409 0c0a -d 0411 -u 0414 040c

See the List of LANGIDs for all the four-digit hexadecimal LANGID values supported by the Windows 2000
MultiLanguage Version.

Configuring the system post setup.

How to Change the Language Used to Display the Menus and Dialogs

[Windows 2000 MultiLanguage Version only]

The Windows 2000 MultiLanguage Version makes it easy for users to change the user interface (menus and
dialogs) into the language that best suits them. Up to 24 different languages can be installed on the machine by an
administrator (any user with administrative privileges) using the muisetup.exe program.

Users select any one of the installed user interface languages* by opening the Regional Options control panel and
choosing one of the languages displayed in the ‘Menus and dialogs’ control.

Programming Windows Applications for Multiple Languages 19

Changing the user interface language has the effect of displaying menus, dialogs and Help files in the specified
language. Changes to the user interface language only become effective after logging off and logging on again.

In this example, German and English are the only user interface languages installed on the system. The user can select either of them, according to
preference or requirements.

20 JV165SN

* Note that network or system administrators can restrict the choice of user interface language through the use of
Group Policy. If policy is set for a particular user, that user will find the ‘Menus and dialogs’ control disabled in
the Regional Options control panel:

Here a Group Policy applied to the user account has restricted the user to the German user interface language.

Restrict the User's Choice of the Language Used to Display Menus and Dialogs

[Windows 2000 MultiLanguage Version only]. Please see the following WEB pages:
http://www.microsoft.com/globaldev/win2k/setup/restrict.asp

For additional information of this subject, please visit the following WEB site for the complete documents:
http://www.microsoft.com/globaldev/default.asp

Programming Windows Applications for Multiple Languages 21

Data

• What data is acceptable?

To decide what data is acceptable, first consider the country in which the application will be used. The
country will determine the cultural content of the data as well as the languages in which the data is prepared.

You will also have to specify if pick list data will be translated or use as is. Proper names, addresses, and
cities also are written differently within the same country. In Belgium, for example, the City of Brussels is
written differently in French than in Dutch. This could lead to serious problems, even inside the same
country. You need to create a special pick list that holds both translations and relates the address to the town
using a key code. You should never let a user type in the town directly without going through a pick list of
predefined towns. These are directives to follow at the user level. What about international branches that will
exchange data between offices. Will they need to translate this data before sending it? You have to establish
rules that the users will follow according to your software specifications and requirements.

In addition, the languages will affect the codepage with which the data is prepared. A codepage is a
character set that a computer uses to display data properly, often to handle international characters.
International characters include characters that have an accent, tilde, umlaut, etc. The most common special
characters are the grave accent (` as in è), acute accent (´ as in é), circumflex (^ as in ê), tilde (~ as in ã),
umlaut (¨ as in ä), ring (° as in å), and slash (/ as in ø), all used in conjunction with vowels. There is also the
cedilla used with the c letter (as in ç or �). Note that most of these letters also need the equivalent in
uppercase.

Character sets or codepages.

A character set is a mapping of characters to their identifying numeric values. Most of the character sets
commonly used in computers are single-byte character sets in which each character is identified by a value one-
byte wide. The large number of characters in Asian languages led to the development of multi-byte character sets,
in particular the double-byte character set (DBCS). Microsoft® Windows NT® incorporates a new global standard
for character encoding: Unicode.

With an international keyboard, you can display international characters by simply pressing the keys dedicated to
those characters. If your keyboard does not have keys for international characters, you can enter such characters
by using the character map provided with Windows or by pressing the ALT key in conjunction with keys on the
numeric keypad. Depending on the codepage in use, the international characters can have different codes; you
should utilize the codepage in use in the target country to test the output.

Data stored in Windows is tagged with a codepage, which is a table of characters and corresponding numbers in
memory that Windows uses to display data properly. For example, if you enter the letter A in a .DBF file, the
letter is stored on your hard disk as the number 65. When you open the file, CA-Visual Objects® inspects the
loaded codepage to find the character corresponding to the number 65, and then displays the character (A) on
your monitor.

Codepages correspond roughly to different alphabets. For example, Windows supplies codepages for English,
German, French, Scandinavian languages, Asian languages, etc. By using a different codepage, applications can
properly display characters from these different alphabets.

22 JV165SN

When working with codepages, be sure to test that the user interface and data display correctly by using the
codepage designed for a particular country. If you see unexpected characters on the screen, check the underlying
codepage. It may be that you do not have the good codepage loaded on your station.

Here are examples of the most popular codepages:

ANSI Code-Page Identifier examples

Identifier Meaning

874 Thai

932 Japan

936 Chinese (PRC, Singapore)

949 Korean

950 Chinese (Taiwan, Hong Kong)

1200 Unicode (BMP of ISO 10646)

1250 Windows 3.1 Eastern European

1251 Windows 3.1 Cyrillic

1252 Windows 3.1 Latin 1 (US, Western Europe)

1253 Windows 3.1 Greek

1254 Windows 3.1 Turkish

1255 Hebrew

1256 Arabic

1257 Baltic

OEM Code-Page Identifier examples

Identifier Meaning

437 MS-DOS United States

708 Arabic (ASMO 708)

709 Arabic (ASMO 449+ BCON V4)

710 Arabic (Transparent Arabic)

720 Arabic (Transparent ASMO)

737 Greek (formerly 437G)

775 Baltic

850 MS-DOS Multilingual (Latin I)

852 MS-DOS Slavic (Latin II)

855 IBM Cyrillic (primarily Russian)

857 IBM Turkish

860 MS-DOS Portuguese

861 MS-DOS Icelandic

862 Hebrew

863 MS-DOS Canadian-French

864 Arabic

Programming Windows Applications for Multiple Languages 23

Identifier Meaning

865 MS-DOS Nordic

866 MS-DOS Russian (former USSR)

869 IBM Modern Greek

874 Thai

932 Japan

936 Chinese (PRC Singapore)

949 Korean

950 Chinese (Taiwan Hong Kong)

1361 Korean (Johab)

Language ID in Windows 2000.

An unattended or silent installation of Windows 2000 MultiLanguage Version requires the appropriate 4-digit
LangID language setting to be specified on the command line. Windows 2000 MultiLanguage Version supports
the following language IDs and language group IDs.

Language IDs

Language LangID Language Group

English (default)

French

Spanish
Italian

Swedish

Dutch
Brazilian

Finnish
Norwegian

Danish

Hungarian
Polish

Russian

Czech
Greek

Portuguese
Turkish

Japanese

Korean
German

Chinese (Simplified)

Chinese (Traditional)
Arabic

Hebrew

0409

040c

0c0a
0410

041D

0413
0416

040b
0414

0406

040e
0415

0419

0405
0408

0816
041f

0411

0412
0407

0804

0404
0401

040d

Western Europe and U.S.

Western Europe and U.S.

Western Europe and U.S.
Western Europe and U.S.

Western Europe and U.S.

Western Europe and U.S.
Western Europe and U.S.

Western Europe and U.S.
Western Europe and U.S.

Western Europe and U.S.

Central Europe
Central Europe

Cyrillic

Central Europe
Greek

Western Europe and U.S.
Turkish

Japanese

Korean
Western Europe and U.S.

Simplified Chinese

Traditional Chinese
Arabic

Hebrew

24 JV165SN

Group language IDs are not specified as a command-line parameter with muisetup.exe, but are used in the
[RegionalSettings] section of the Unattend.txt file.

Group Language IDs

Language Group ID Supported Locales

Western Europe and United States 1

Afrikaans

Basque
Catalan

Danish

Dutch_Standard
Dutch_Belgian

English_United_States

English_United_Kingdom
English_Australian

English_Canadian
English_New_Zealand

English_Irish

English_South_Africa
English_Jamaica

English_Caribbean

English_Belize
English_Trinidad

English_Zimbabwe
English_Philippines

Faeroese

Finnish
French_Standard

French_Belgian

French_Canadian
French_Swiss

French_Luxembourg
French_Monaco

German_Standard

German_Swiss
German_Austrian

German_Luxembourg

German_Liechtenstein
Icelandic

Indonesian
Italian_Standard

Italian_Swiss

Malay_Malaysia
Malay_Brunei_Darussalam

Norwegian_Bokmal

Norwegian_Nynorsk
Portuguese_Brazilian

Portuguese_Standard
Spanish_Traditional_Sort

Spanish_Mexican

Spanish_Modern_Sort
Spanish_Guatemala

Spanish_Costa_Rica

Spanish_Panama
Spanish_Dominican_Republic

Programming Windows Applications for Multiple Languages 25

Language Group ID Supported Locales

Spanish_Venezuela

Spanish_Colombia
Spanish_Peru

Spanish_Argentina

Spanish_Ecuador
Spanish_Chile

Spanish_Uruguay
Spanish_Paraguay

Spanish_Bolivia

Spanish_El_Salvador
Spanish_Honduras

Spanish_Nicaragua

Spanish_Puerto_Rico
Swahili

Swedish
Swedish_Finland

Central Europe 2

Albanian

Croatian

Czech
Hungarian

Polish
Romanian

Serbian_Latin

Slovak
Slovenian

Baltic 3

Estonian

Latvian
Lithuanian

Greek 4 Greek

Cyrillic 5

Azeri_Cyrillic

Belarusian
Bulgarian

Kazakh

Macedonian
Russian

Serbian_Cyrillic

Tatar
Ukrainian

Uzbek_Cyrillic

Turkic 6
Azeri_Latin
Turkish

Uzbek_Latin

Japanese 7 Japanese

Korean 8 Korean

26 JV165SN

Language Group ID Supported Locales

Traditional Chinese 9

Chinese_Taiwan

Chinese_Hong_Kong
Chinese_Macau

Simplified Chinese 10
Chinese_PRC

Chinese_Singapore

Thai 11 Thai

Hebrew 12 Hebrew

Arabic 13

Arabic_Saudi_Arabia

Arabic_Iraq

Arabic_Egypt
Arabic_Libya

Arabic_Algeria
Arabic_Morocco

Arabic_Tunisia

Arabic_Oman
Arabic_Yemen

Arabic_Syria

Arabic_Jordan
Arabic_Lebanon

Arabic_Kuwait
Arabic_UAE

Arabic_Bahrain

Arabic_Qatar
Farsi

Urdu

Vietnamese 14 Vietnamese

Indic 15

Hindi
Konkani

Marathi

Sanskrit
Tamil

Georgian 16 Georgian

Armenian 17 Armenian

Programming Windows Applications for Multiple Languages 27

Data indexing.

Most European nations have in their alphabets a variety of accents, tildes, and umlauts. Windows supports these
diacritical markings by means of 64 special characters in the ANSI character set. Your users can enter these
characters, and your program can display them, without any special action on your part.

CA-Visual Objects® character functions, such as Upper(), IsUpper(), and IsAlpha(), are all sensitive to the
presence of these international characters. So Upper("été") correctly returns ÉTÉ, and IsAlpha("é") correctly
returns TRUE. This behavior does not depend on Setlnternational(), and it applies whether or not CA-Clipper®
compatibility is in force.

String comparisons work in the same way. "ÉTÉ" is considered to be less than "FTF," for example. If you want
to compare strings in a more conventional way, insert the following code before the comparison:

SetCollation(#Clipper)

This will cause characters to be compared on the basis of their numeric values, with all the normal Latin letters
being evaluated lower than all the international ones. This also implies that the loaded Nation Module in
CA-Visual Objects® will use the same collation as the language specific CA-Clipper® data.

To switch off this behavior, issue this function call:

SetCollation(#Windows)

SetCollation() also affects the case-sensitivity of normal alphabetical comparisons. With the #Windows setting,
"a" is always less than "B"; with the #Clipper settings, "B" is less than "a."

The default for SetCollation() is whichever value is currently in force for Setlnternational(). Changing
Setlnternational() automatically changes SetCollation().

Finally, be careful when working with indexes that contain international characters. The exact collating sequence
of the index depends on the language that was in force when it was created. If you update the index when a
different language setting is in force, it could become corrupted. To be safe, you might want to read the
sLanguage entry in WIN.INI and disallow the updating of the index if it has changed.

If you are sharing data with a CA-Clipper® application or want to use the language-specific collation for indexes,
you can use nation-specific files with CA-Visual Objects® (Nation Modules). These modules, once installed and
activated using SET COLLATION TO CLIPPER, change character handling to the country specified. Your
version of CA-Clipper® MUST also have the same collation (country specific) as the one in the CA-Visual
Objects® Nation Module.

With CA-Visual Objects® 2.5x, you will need to replace CAVONT20.DLL in your CA-Visual Objects® directory
(usually C:\CAVO25) with the nation module that you require. After a backup of the original file, this can be
achieved by using the File Manager or by using the DOS COPY command, for example:

COPY C:\CAVO25\SPANISH.DLL C:\CAVO25\CAVONT20.DLL

28 JV165SN

Do not attempt to do this while a CA-Visual Objects® application is running. Only one language may be used at
any one time.

Available Nation modules for CA-Visual Objects 2.5x.

Language Filename

Croatian ASCII CROATIA.DLL

Czech-852 ASCII CZECH852.DLL

Czech-895 ASCII CZECH895.DLL

Danish ASCII DANISH.DLL

Dutch ASCII DUTCH.DLL

Finnish ASCII FINNISH.DLL

French ASCII FRENCH.DLL

German ASCII GERMAN.DLL

Hungarian-852 ASCII HUNG852.DLL

Hungarian-CWI ASCII HUNGCWI.DLL

Italian ASCII ITALIAN.DLL

Norwegian ASCII NORWEGN.DLL

Polish-852 ASCII POL852.DLL

Polish-ISO ASCII POL-ISO.DLL

Polish-Mazvia ASCII POL-MAZ.DLL

Portuguese Brazilian BRAZIL.DLL

Portuguese-850 ASCII PORT850.DLL

Portuguese-860-ASCII PORT860.DLL

Romania-437 ASCII ROMANIA.DLL

Russian ASCII RUSSIAN.DLL

Slovakia-852 ASCII SLOV852.DLL

Slovakia-895 ASCII SLOV895.DLL

Slovenia-W95 ASCII SL-W-95.DLL

Slovenia-AS7 ASCII SL-W-AS7.DLL

Slovenia-895 ASCII SL-W-EE.DLL

Spanish ASCII SPANISH.DLL

Swedish ASCII SWEDISH.DLL

With CA-Visual Objects® 2.5x, you can use a function to activate a new DLL for nation-dependent operations
and messages. This function is SetNatDLL(). The default library for nation-dependent operations is
CAVONT20.DLL. SetNatDLL() disables the default DLL and loads the specified DLL as a parameter to the
function that is active until the next call to SetNatDLL().

Programming Windows Applications for Multiple Languages 29

The next example sets DLL CAVONT20.GER for nation-dependent operations:

? GetNatDLL() // CAVONT20.DLL

? SetNatDLL("CAVONT20.GER") // .T.

? GetNatDLL() // CAVONT20.GER

The function GetNatDLL() returns the current DLL for nation-dependent operations and messages.

SetCollation() sets the internal collation routine that is used for all string comparisons, except the ones done
using the == operator. Note that this includes sort and index operations, as well as programmatic string
comparisons using the various operators.

Note: Changing SetInternational() automatically changes SetCollation(), so that the two settings are the same.

This setting allows CA-Visual Objects® to operate in different collation modes. The #Clipper mode is provided
for compatibility with CA-Clipper® applications and uses a collation routine defined in the nation module
(CAVONT20.DLL). The #Windows mode uses string comparison services provided by Windows that
automatically handle foreign character sets.

Therefore, if an application uses the #Clipper collation mode, it will behave the same on all machines. Thus, to
achieve a different collation sequence based on a language other than English, you would need a version of
CAVONT20.DLL specialized to the desired language. On the other hand, if the application uses the #Windows
collation mode, it will behave differently from machine to machine, depending on the language defined in the
International Settings of the Control Panel. In this case, all languages supported by Windows are also supported
by your application, including right-to-left languages, such as Hebrew and Arabic, and double-byte languages,
such as Chinese, Japanese, and Korean.

Note: String functions, such as Substr(), that operate at the byte level will not function correctly with double-
byte characters.

The collation sequence for the regular Latin character set is different for #Clipper and #Windows.

For #Clipper:

A < B < C < … < Z < a < b < c < … < z

For #Windows:

A < a < B < b < C < c < … < Z < z

Warning! SetCollation() determines how index files and the orders within them are created and maintained.
Attempting to use different collation modes in the same order will corrupt the order.

30 JV165SN

Multilingual data.

In some countries, it is better to leave proper names and addresses in the native language. Sometimes it could be
useless and troublesome to translate them. There are some exceptions though; in some countries, there is more
than one official language. In these, the developer will have to take care of every exception. For example, as
mentioned earlier, in Belgium, the City of Brussels is written differently in French than in Dutch. One suggestion
would be to create pick lists for street and city names, with both translations in the description, and then store this
information as a code to connect the master table and the detail's table. You should never let a user type in the
town directly, as you will end up with duplication in your tables if you rely on this information for a uniqueness
check. The search will not find your record if the user enters the search key in the other language. You, as a
developer, have the responsibility to build software that will take care of the exceptions and you will have to
define the rules when these exceptions have no work around.

If your end users are with multinational enterprises, maybe some data will be exchanged from one branch to other
branches or to the main office. If your data has to be stored in a local language using local codepages, this could
lead to problems when you merge the data with other languages and codepages. In this case, your communication
module will have to translate this data into another codepage or Unicode before sending it; there are many CA-
Visual Objects® functions or Windows API functions to do this. This part of the development process is more
related to database architecture, but it will change the structure of your program. So, this subject is very
important and must be defined before the development cycle. Once the rules are established, you will have fewer
undesired surprises when the alpha testing cycle will start in another country.

The best way to avoid such codepage problems would be to use Unicode.

Unicode and Double-Byte Characters

Some languages, such as Chinese, Korean, and Japanese, use DBCS (double-byte character sets) to represent
their data. If your application might run in these environments, you might need to use special string-handling
functions and collation sequences for the application to work properly.

Definition.

The first and most prominent character standard in use by computers today is ASCII. This format is adequate for
western languages, but as computers became more popular in all countries, the limitations of ASCII became
clear.

 In an effort to overcome some of these imitations, the International Standards Organization (ISO) established a
new standard called Latin-1 that defined European characters that were omitted from ASCII.

Microsoft Windows® modified the Latin-1 standard even further and called the character set Windows ANSI.
However, by continuing use of an 8-bit coding scheme, ASCII is only capable of representing 256 unique
symbols -- considerably less than the 10,000 symbols that are common in such languages as Cyrillic, Chinese,
Korean, and Japanese.

In addition to the language barriers, as the capabilities of computers broaden beyond uppercase, monospaced
fonts, the requirements for a large set of unique characters (for example, letters, punctuation, mathematical and
technical symbols, and publishing characters) have also grown far beyond the capabilities of 8-bit text.

Programming Windows Applications for Multiple Languages 31

The lowest level of localization (adaptation to a particular language) is the actual binary representation of
characters: the code set. To overcome the limitations of the other coding methods, several major computer
companies, including Apple Computer Inc.®, Sun Microsystems Inc.®, Xerox Corp.®, and IBM® (International
Business Machines Corp.), formed Unicode Inc.®, a non-profit consortium, to set out to define a new standard for
international character sets. At the same time, the ISO began developing a standard. Eventually, these standards
merged and became Unicode. Unicode is published as The Unicode Standard, Worldwide Character Encoding.

Unicode employs a 16-bit coding scheme that allows for 65,536 distinctive characters--more than enough to
include all languages in use today. In addition, it supports several archaic or arcane languages such as Sanskrit
and Egyptian hieroglyphs. Unicode also includes representations for punctuation marks, mathematical symbols,
and dingbats, with room left for future expansion. Because it establishes a unique code for each character in each
script, Windows NT® can insure that the character translation from one language to another is accurate.

ANSI strings use one byte per character if they do not contain any DBCS characters. UNICODE strings use two
bytes per character.

Single-Byte Character Set

A single-byte character set is a mapping of 256 individual characters to their identifying numeric values. The
character codes 0x20 through 0x7E represent standardized displayable characters, but the characters represented
by the remaining codes vary among character sets. The ASCII character set covers the range 0x00 through 0x7F.

In Windows, the ANSI character set is used in window manager and graphics device interface (GDI), but the
MS-DOS file allocation table (FAT) file system uses a character set called the original equipment manufacturer
(OEM) character set. Variations on the character sets, called codepages, include different special characters,
typically customized for a language or group of languages. The OEM codepage generally used in the United
States is codepage 437.

Applications that use the Microsoft® Win32® application programming interface (API) can use Unicode to avoid
the inconsistencies of varied codepages and as an aid in developing easily localized applications.

If we have a look at the Windows API, your application can use the GetACP() function to retrieve the ANSI
code-page identifier for the system or use the GetOEMCP() function to retrieve the OEM code-page identifier.

The OemToChar() and OemToCharBuff() functions allow an application to convert a character or string from the
OEM codepage to either the ANSI codepage or Unicode. To convert in the other direction, you can use either the
CharToOem() or CharToOemBuff() function. In addition, an application can use the MultiByteToWideChar()
and WideCharToMultiByte() functions to map single-byte character set (SBCS) strings to Unicode and Unicode
strings to SBCS strings.

The GetCPInfo() function fills a CPINFO structure with information that includes the size, in bytes, of the largest
character in the codepage and the default character used when a character code is entered that has no
corresponding entry in the codepage.

In CA-Visual Objects®, the built in functions are: Ansi2Oem(), Ansi2OemA(), Ansi2OemBuff(), Oem2Ansi().
They are mostly conversion functions from EOM to ANSI and vice-versa. They act as wrappers for the API
functions. The API functions may be better because they are new to the 32-bit API and replace the old 16 bits
that are now obsolete.

32 JV165SN

Double-Byte Character Set (DBCS)

The double-byte character set (DBCS) is called an expanded 8-bit character set because its smallest unit is a byte.
It can be thought of as the ANSI character set for some Asian versions of Windows (particularly the Japanese
version). However, unlike the handling of Unicode, DBCS character handling requires detailed changes in the
character-processing algorithms throughout an application’s source code.

An application can use the IsDBCSLeadByte() function to determine whether a given character is the first byte in
a 2-byte character; this helps identify double-byte character sets. In addition, an application can use the
MultiByteToWideChar() and WideCharToMultiByte() functions to map DBCS strings to Unicode and Unicode
strings to DBCS strings.

Unicode

Unicode is a worldwide character-encoding standard. Windows NT/2000 uses it exclusively at the system level
for character and string manipulation. Unicode simplifies localization of software and improves multilingual text
processing. By implementing it in an application, a developer can enable the application with universal data
exchange capabilities for global marketing, using a single binary file for every possible character code. Windows
9x only offers very limited support for Unicode. Therefor CA-Visual Objects 2.x does not support development
of native Unicode applications.

Unicode defines semantics for each character, standardizes script behavior, provides a standard algorithm for bi-
directional text, and defines cross-mappings to other standards. Among the scripts supported by Unicode are
Latin, Greek, Han, Hiragana, and Katakana. Supported languages include, but are not limited to, German,
French, English, Greek, Chinese, and Japanese.

Unicode can represent all the world’s characters in modern computer use, including technical symbols and
special characters used in publishing. Because each Unicode character is 16 bits wide, it is possible to have
separate values for up to 65,536 characters. Unicode-enabled functions are often referred to as “wide-character”
functions.

Win32 functions support applications that use either Unicode or the regular ANSI character set. Mixed use in the
same application is also possible. Adding Unicode support to an application is easy, and a developer can even
maintain a single set of sources from which to compile an application that supports either Unicode or the
Windows ANSI character set.

Win32 functions support Unicode by assigning its strings a specific data type and providing a separate set of
entry points and messages to support this new data type.

Programming Windows Applications for Multiple Languages 33

Unicode and your operating system.

Unicode in Windows 2000
®

Windows 2000 supports Unicode Version 2.0. If you run a program that uses Unicode on a Windows 2000-based
computer, you can input text from another language. For example, a program that uses the English language
would support Japanese text. Windows 2000 APIs are fully functional in every language edition of the operating
system.

You need to restart your Windows 2000-based computer when changing program environments if they use a
specific codepage. For example, you need to restart your computer when you switch between a multi-language
program that uses codepage 932 for Japanese and a Russian program that uses codepage 932. However, Unicode-
based programs do not require that you restart your computer.

Microsoft Windows 95/98, Microsoft Windows NT 4.0 and Windows 2000 contain tables that convert text
between ANSI character encodings and Unicode. A software developer can add a conversion table to allow
Windows to use programs that do not use Unicode, including UNIX and Macintosh character encodings.

Windows 95/98 does not contain native support for Unicode, but does support several wide character API's, such
as the TextOutW API.

In Windows NT, IME APIs were either unavailable or added onto non-Asian language editions of Windows NT.
A program that does not use Unicode can add code to trap IME messages to use Japanese text.

For information about Unicode version 2.0, please visit the following Web site:

http://www.unicode.org/

Unicode in Windows NT
®

Windows NT® is the first widely available operating system to be built upon the Unicode character encoding.
Almost all of the strings used in the system have 16bits reserved for each character. However, Windows NT®
does not yet realize the Unicode ideal of offering an editor capable of handling one document containing all of
the languages of the world.

Because the industry is moving to Windows NT®, and Windows NT® supports Unicode, many software vendors
want to convert existing ASCII (or ANSI) help and resource files into Unicode.

Unicode is the native code set of Windows NT®, but the Win32 subsystem provides both ANSI and Unicode
support. Character strings in the system, including object names, path names, and file and directory names are
represented with 16-bit Unicode characters. The Win32 subsystem converts any ANSI characters it receives into
Unicode strings before manipulating them. It then converts them back to ANSI, if necessary, upon exit from the
system.

Some API functions exist only in wide-character versions and can be used only with the appropriate data type.

In Windows, the ANSI character set is used in the window manager and GDI; the MS-DOS FAT file system uses
the OEM character set. Windows applications that create MS-DOS files have sometimes had to use the
CharToOem() and OemToChar() functions to translate between these character sets. However, the New
Technology File System (NTFS) is capable of storing filenames in Unicode; no translation is necessary with
NTFS.

34 JV165SN

With Unicode implementations of the file-system functions, it is not necessary to perform translations to and
from ANSI and OEM character sets.

The special filename characters in MS-DOS are unchanged in Unicode filenames:

“\”, “/”, “.”, “?”, “*”

These special characters are in the ASCII range of characters (0x00 through 0x7F) and their Unicode equivalents
are simply the same values in a 2-byte form: 0x0000 through 0x007F.

Unicode and Character Set Functions

The following are the character set functions. On errors, some of these functions set an extended error value. Use
the GetLastError() function to retrieve this value.

GetTextCharset This function obtains a character-set identifier for the font that is currently selected
for a specified device context. If the function succeeds, the return value identifies the
character set of the font that is currently selected for the specified device context.

GetTextCharsetInfo This function obtains information about the character set of the font that is currently
selected for a specified device context. If the function succeeds, the return value
identifies the character set of the font currently selected for the specified device
context; but it also stores info about the font to a structure (font signature)

IsDBCSLeadByteEx This function determines whether a character is a lead byte. That is, the first byte of a
character in a double-byte character set (DBCS). If the function succeeds, the return
value is nonzero.

TranslateCharsetInfo This function translates based on the specified character set, codepage, or font
signature value, setting all members of the destination structure to appropriate values.

WideCharToMultiByte This function maps a wide-character string to a new character string. The new
character string is not necessarily from a multi-byte character set.

These functions can be used to work with Unicode strings. When converting ASCII to Unicode, remember that
the entire set of ASCII characters maps perfectly to the first characters in Unicode. You need only add a second
null bit and a 0x00 in the high byte.

Supported or unsupported?

The Rich Edit control included with Windows 95® and Windows NT® version 3.51 does not support Unicode.
For a Unicode application to use the Rich Edit control, it must convert any strings passed to the control to ASCII
text.

Unicode support in Windows NT®:

• All Windows USER objects support Unicode strings.

• The Win32 console is Unicode enabled.

• NTFS supports Unicode filenames.

• All of the information strings in the registry are Unicode.

• The L_10646.TTF (Lucida Sans Unicode) font covers over 1300 Unicode characters.

• Most of the TrueType fonts include a Unicode encoding table.

Programming Windows Applications for Multiple Languages 35

 Unicode features missing from Windows NT®:

• There is no font support for all of the Unicode characters.

• The FAT and HPFS file systems do not support Unicode filenames. (Nor will they in the future; to
accomplish this, use NTFS.)

Unlike Windows NT®, Windows 95® does not implement the Unicode (or wide character) version of most Win32
functions that take string parameters.

With some exceptions, these functions are implemented as stubs that simply return success without modifying
any arguments.

In general, Windows 95® implements the ANSI version of these functions.

One major exception to this rule is OLE. All native 32-bit OLE APIs and interface methods use Unicode
exclusively. For more information on this, please see the OLE documentation.

Excluding OLE, Windows 95® supports the wide character version of the following functions:

• EnumResourceLanguages()

• EnumResourceNames()

• EnumResourceTypes()

• ExtTextOut()

• FindResource()

• FindResourceEx()

• GetCharWidth()

• GetCommandLine()

• GetTextExtentExPoint()

• GetTextExtentPoint32()

• GetTextExtentPoint()

• lstrlen()

• MessageBoxEx()

• MessageBox()

• TextOut()

 In addition, Windows 95® implements the following two functions for converting strings to or from Unicode:

• MultiByteToWideChar()

• WideCharToMultiByte()

36 JV165SN

Double byte languages.

If you are working in a DBCS environment, you can use an Input Method Editor to input characters into the
application. The IME is an application provided with your environment that allows you to type characters on the
keyboard to display a selection of international characters and then choose the specific character you want. For
example, an IME for Chinese might allow you to enter a Pinyin representation of a Chinese word and then
display a list of characters that match the representation. When you select the character you want, the IME pastes
it into the application.

Double Byte and CA-Visual Objects
®

CA-Visual Objects® includes functions for manipulating character expressions containing any combination of
single-byte or double-byte characters. By using DBCS string functions, you can develop applications without
having to write extra code that tests for double-byte characters when counting, locating, inserting, or removing
characters in a string.

Most DBCS functions are equivalent to their single-byte counterparts except that they are named with an MB
prefix to distinguish them. A few other functions help you work with strings specifically in double-byte
environments, like JCDow(), which is the equivalent of DoW() and extracts the Japanese name of the day of the
week from a date.

Double-byte (DBCS) specific functions

Functions Description

DBToSB() Convert double-byte kana characters in a string to their single-byte equivalents.

IsKanji() Determine if the first character of a string is a kanji character.

JCDoW() Extract the Japanese name of the day of the week from a date.

JCMonth() Extract the Japanese name of the month from a date.

JCYear() Extract the wareki, or Japanese year, from a date.

JNToCDoW() Convert the number that identifies a day into the Japanese name of the day.

JNToCMonth() Convert the number that identifies a month into the Japanese name of the month.

JNToCYear() Convert a year specified as a number to its wareki, or Japanese year, equivalent.

MBAllTrim() Remove leading and trailing spaces--including double-byte spaces--from a string.

MBAt()

MBAt2()

MBAt3()

Return the position of the first occurrence of a substring within a string--both the substring
and the string can contain double-byte characters.

MBAtC()

MBAtC2()

Return the position of the first occurrence of a substring within a string, without regard for
case--both the substring and the string can contain double-byte characters.

MBAtLine()

MBAtLine2()

Return the line number of the first occurrence of a substring within a multiple line string--
both the substring and the string can contain double-byte characters.

MBLeft() Return a substring beginning with the first character of a string containing double-byte
characters.

Programming Windows Applications for Multiple Languages 37

Functions Description

MBLen() Return the length of a string containing double-byte characters or an array.

MBLTrim() Remove leading spaces--including double-byte spaces--from a string.

MBPszLen() Return the length of a PSZ containing double-byte characters.

MBRAt()

MBRAt2()

MBRAt3()

Return the position of the last occurrence of a substring within a string--both the substring
and the string can contain double-byte characters.

MBRight() Return a substring beginning with the last character of a string containing double-byte
characters.

MBRTrim() Remove trailing spaces--including double-byte spaces--from a string.

MBSLen() Return the length of a strongly typed string containing double-byte characters.

MBStuff() Insert a string into another string, optionally deleting a specified number of characters from
the original string--both strings can contain double-byte characters.

MBSubstr()

MBSubstr2()

MBSubstr3()

Extract a substring from a string--both the substring and the string can contain double-byte
characters.

MBTrim() Remove trailing spaces--including double-byte spaces--from a string.

SBToDB() Convert single-byte kana characters in a string to their double-byte equivalents.

ToHira() Convert single-byte and double-byte katakana characters in a string to their double-byte
hiragana equivalents.

ToJNum() Convert the single-byte and double-byte numbers in a string to double-byte kanji numbers.

Left to right languages.

Some languages, like Arabic or Hebrew, are languages where the writing is done from left to right. This means
that the controls are or should be reversed on your window to fit the language. This presents more problems to
the programmer writing multi-lingual applications that will take care of the two types of languages, right-to-left
and left-to-right. You will have to store the controls and label coordinates with your strings. This is a real
challenge for programmers, and even more if you are not a native of the language.

38 JV165SN

Windows Codepages

The list below provides graphical representations and textual listings for each of the Windows codepages.

SBCS (Single-Byte Character Set) Codepages

Microsoft Windows OEM Codepage : 437 (US)

Programming Windows Applications for Multiple Languages 39

Microsoft Windows Codepage: 1250 (Central Europe)

40 JV165SN

Microsoft Windows Codepage: 1251 (Cyrillic)

Programming Windows Applications for Multiple Languages 41

Microsoft Windows Codepage: 1252 (Latin I)

42 JV165SN

Microsoft Windows Codepage: 1253 (Greek)

Programming Windows Applications for Multiple Languages 43

Microsoft Windows Codepage: 1254 (Turkish)

44 JV165SN

Microsoft Windows Codepage: 1255 (Hebrew)

Programming Windows Applications for Multiple Languages 45

Microsoft Windows Codepage: 1256 (Arabic)

46 JV165SN

Microsoft Windows Codepage: 1257 (Baltic)

Programming Windows Applications for Multiple Languages 47

Microsoft Windows Codepage: 1258 (Viet Nam)

48 JV165SN

Microsoft Windows Codepage: 874 (Thai)

Programming Windows Applications for Multiple Languages 49

DBCS (Double-Byte Character Set) Codepages

In the following graphical representations, light gray background shading indicates lead bytes. Each of these lead
bytes has a hyperlink to a new page showing the 256-character block associated with that lead byte. A darker
gray background identifies unused lead bytes.

Microsoft Windows Codepage: 932 (Japanese Shift-JIS)

50 JV165SN

The following is an example of a sub-codepage (Japanese) using the Lead Byte 83.

Microsoft Windows Codepage: 932 (Japanese Shift-JIS)

Lead Byte = 0x83

Programming Windows Applications for Multiple Languages 51

Microsoft Windows Codepage: 936 (Simplified Chinese GBK)

52 JV165SN

Microsoft Windows Codepage: 949 (Korean)

Programming Windows Applications for Multiple Languages 53

Microsoft Windows Codepage: 950 (Traditional Chinese Big5)

54 JV165SN

The following is an example of a sub-codepage (Traditional Chinese Big5) using the Lead Byte A4.

Microsoft Windows Codepage: 950 (Traditional Chinese Big5)

Lead Byte = 0xA4

Programming Windows Applications for Multiple Languages 55

Glossary

Portions of this glossary are reproduced with permission from Developing International Software, published by
Microsoft Press.

Accent: See Diacritic.

ACP: Acronym for the ANSI Codepage in use. Windows NT uses this codepage to convert to/from Unicode
automatically whenever an application calls one of the 'A' entry points.

ANSI: 1) Acronym for the American National Standards Institute. 2) The Microsoft Windows ANSI character
set, essentially ISO 8859/x plus additional characters, which was originally based on an ANSI draft standard. See
Windows codepages for information about the characters contained in the ANSI character set.

ASCII: Acronym for American Standard Code for Information Interchange. ASCII, the US national variant of
ISO 646, is a 7-bit character set encoding that contains characters for upper and lowercase English, American
English punctuation, base 10 numbers, and a few control characters. Although very primitive, it's important to
note that ASCII’s set of 128 characters is the one common denominator contained in all the other common
character sets.

Base character: One or more of:
A character that has meaning independent of other characters.
Any graphical character that is not a diacritic.
Any graphical character that is not, itself, a diacritic.

Character: The simplest element used to represent written languages. Note that the appearance of a character is not
constant: a character's appearance depends on the font used as well as the context of surrounding text.

A code element. See Glyph.

Character Encoding: A one-to-one mapping from a set of characters into a set of numbers, used to represent
text in software.

Codepage (also code-page, code page): An ordered set of characters in which a numeric index (codepoint value)
is associated with each character. This term is generally used in the context of codepages defined by Windows
3.1 or MS-DOS, and may also be called a "character set" or charset. See Windows codepages for information
about the characters contained in each codepage.

Complex Script: Scripts that require special processing to display, print, and edit. For more information, see the
Complex Scripts FAQ.

Composite character (also composed character): A text element consisting of a base character AND a diacritic
or accent mark. Although most common in the Latin script, other scripts (including Greek, Devanagari and
Tamil) have composite characters too.

Diacritic: Any mark placed over, under, or through a character, usually to indicate a change in phonetic value from
the unmarked state. A character that is attached to or overlays a preceding base character. Most diacritics are non-
spacing characters that do not increase the width of the base character.

Double-byte character set (DBCS): Any 2-byte form of character encoding. Note that DBCS character sets
often contain single byte characters as well. See Multi-byte character set.

56 JV165SN

Enabling: See Language Enabling.

End-User Defined Character (EUDC): A special character, such as a rare ideograph, that the user creates with
an editor and assigns to a code point within a reserved range. Note that such characters are not automatically
recognized by the system for functions such as sorting.

Floating accent: See Diacritic.

Font: A collection of glyphs for displaying text in a particular typeface.

Formatted text: Text displayed with multiple attributes, such as typeface, slant, weight, and color, and special
effects such as shading, underlining, and blinking.

Globalization: Designing and implementing software so that it can support all targeted locales and user interface
languages without modification to the software source itself. This processing includes enabling for all target
languages, and adding NLS support for target locales.

Glyph: A graphical representation of a character.

IME: See Input Method Editor.

IMM: See Input Method Manager.

Internationalization: See Globalization.

Input language: A language to be inputted into the system, be it through the keyboard, a speech-to-text
converter or an IME.

Input locale: An ordered pair consisting of an input language (LangID) and a method of inputting characters in
the language. The method can be a keyboard layout, an IME, or other device provided by a vendor, such as a
speech recognition engine. See the Locales and Language Groups FAQ for more information.

Input Method Editor (IME): A software program used to enter text with large character sets, such as Chinese,
Japanese, and Korean.

Input Method Manager (IMM): The module in Windows that handles communication between Input Method
Editors (IMEs) and applications.

Keyboard layout: A standard arrangement of characters on a keyboard that defines which keys produce
particular characters or scan codes.

Language ID (LangID): A 16-bit value that identifies a language. A LangID consists of a primary language, such
as Arabic, and a sub-language, such as Arabic for Saudi Arabia.

Language Enabling: Adding support to software for document content in a particular language. In this sense, to
enable an application for Japanese means to modify the software so that the user can enter, display, edit, and print
text containing Japanese. Modifying software so that it can be localized to a particular language. In this sense,
enabling for Japanese means to modify software so that it can display Japanese text correctly in menus, dialog
boxes, and other user interface elements. Note that in either sense, an enabled product may still have the user
interface in English, i.e., it may not be localized. Contrast Localization.

Programming Windows Applications for Multiple Languages 57

Lead Byte: The byte value that is the first half of a double-byte character. See Double-byte character set.

Ligature: Two or more characters combined to represent a single typographical character. The modern Latin
script uses only a few. Other scripts use many ligatures that depend on font and style. Some languages, such as
Arabic, have mandatory ligatures; other languages have characters that were derived from ligatures, such as the
German ligature of long and short "s" (ß) and the ampersand (&), which is the contracted form of the Latin word
et.

Locale: A generic term indicating a set of attributes related to language and other regional/ethnic preferences.
Examples include currency symbol, date and time format, calendar type, number formats, default character
encoding, and keyboard layouts. Microsoft uses this term in combination with others to specify a subclass of
these preferences. See the Locales and Language Groups FAQ for more information. See also Input locale,
System locale, and User locale.

Locale ID (LCID): A 32-bit value that identifies a locale. An LCID consist of a LangID and a sort key ID.

Localization (to a language): Translating the user interface elements from the original language, usually English,
to the target language. Contrast Language Enabling.

Logical order: The ordering of characters in text corresponding to the order in which they are inputted (such as
when writing by hand, or keying in text using a keyboard). Contrast Visual order.

Multi-byte character set (MBCS): A mixed-width character set, in which some characters consist of more than
one byte. A double-byte character set, which is a specific type of multi-byte character set, includes some
characters that consist of two bytes.

National Language Support (NLS): The set of system functions in 32-bit Windows that contain national
language support (information that is based on language and cultural convention).

Non-spacing character: a character, such as a diacritic, that has no meaning by itself, but overlaps a base
character to modify it. Sometimes referred to as a "combining character".

OEMCP: Default OEM codepage of the system. The OEM codepage is the one used for conversions of MS-
DOS based text mode applications.

OpenType: A font format jointly developed by Microsoft and Adobe Systems, Inc. to allow for the addition of
Type 1 (PostScript) font data to a TrueType font. For more information, see Microsoft Typography’s OpenType
FAQ.

OpenType Layout: An extension to the OpenType format designed to provide support for international and
high-end typography. See the OpenType Layout specification on Microsoft Typography’s site for more
information.

Plain text: A string of text to be displayed with one value for each text attribute, i.e., one typeface, one slant, and
one weight. Contrast Formatted text.

Precomposed character: A single character that represents a sequence of characters, usually a combination of a
base character and one or more diacritics.

Private Use Area (PUA): The area in Unicode from U+E000 through U+F8EE that is set aside for vendor-
specific or user-designated characters.

58 JV165SN

Reading order: The overall direction of a sequence of text. Whereas words in a given script always flow in the
direction associated with that script (e.g., LTR for Latin, RTL for Hebrew), the flow sentence itself depends on
the reading order. For example, a mixture of Arabic and English text may be regarded as French embedded in an
overall Arabic sentence, implying RTL reading order, or as Arabic embedded in French, implying LTR reading
order.

Release delta: The time between the release of the domestic product and the release of the localized edition. See
also Simultaneous ship.

Rich Text: See Formatted text.

Script: A collection of characters for displaying written text, all of which have a common characteristic that
justifies their consideration as a distinct set. One script may be used for several different languages (e.g., Latin
script, which covers all of Western Europe), and some written languages require multiple scripts (e.g., Japanese,
which requires at least three scripts: the hiragana and katakana syllabaries and the Kanji ideographs imported
from China). Note that this sense of the word script has nothing to do with programming scripts such as Perl or
VB Script.

Separators: Symbols used to separate items in a list, mark the thousands place in numbers, or represent the
decimal point. Different locales follow different conventions for separators.

Simultaneous ship (sim-ship): The release of localized editions of a product at the same time or soon after the
domestic edition is released, usually within 30 days. See also Release delta.

Single byte character set: A character encoding in which each character is represented by 1 byte. Single-byte
character sets are mathematically limited to 256 characters.

Slant: The obliqueness or tilt of the glyphs in a font. The most common slants are "regular" and "italic".

Spacing character: A character with a non-zero width. Contrast with non-spacing character.

Syllabary: A set of written characters in which each character represents a syllable -- for example, a consonant
sound followed by a vowel sound. Examples of syllabaries include Japanese Katakana/Hiragana and the Indic
scripts.

System locale: The locale emulated by the system, as seen by applications. For example, if the system locale for
US Windows 2000 is set to Hebrew, then ANSI applications will see it as Hebrew localized Windows 2000,
although the user interface of the system will still be in English. The system locale is system wide, in that it
applies to all users. Changing the system locale requires a reboot. See the Locales and Language Groups FAQ for
more information.

Trail byte: The byte value that is the second half of a double-byte character.

Typeface: Name given to a particular style of text. In contrast, a font is an implementation of a typeface.

Unicode: a 16-bit character encoding that contains all of the characters in common use in the world's major
languages. Unicode provides an unambiguous representation of text across a range of scripts, languages and
platforms.

Programming Windows Applications for Multiple Languages 59

Uniscribe: The Unicode Script Processor built into Windows 2000. Uniscribe supports line measurement,
display, caret movement, character selection, justification, and linebreaking, of Unicode plaintext and rich text.
Uniscribe covers most characters in Unicode. For more information, see the Uniscribe presentation given at the
13th International Unicode conference.

User locale: The user default preferences for calendar type, date format, currency, and number format. The user
locale is a per-user setting, and does not require a reboot or logoff/logon. See the Locales and Language Groups
FAQ for more information.

Visual order: The ordering used to display glyphs on a screen, printed page, or other medium. Usually used with
bi-directional text, because reordering is required to go from logical order to visual order. Contrast Logical order.

Weight: The thickness or darkness of glyphs in a font The most common weights are "regular" and "bold", but in
some font families can include such various weights as "light", "demi", "heavy" or "extra bold", and so on.

Writing system: The collection of scripts and orthography required to represent a given human language in
visual media.

Conclusion

Writing your application for international distribution can be a big challenge, but the rewards will be worth the
effort. Most users will be very happy to work in their native language, and they will promote your product for
you. With a good organization, a good architecture, a good tool like CA-Visual Objects® and teamwork between
the end users and the programmers, you will make your product the best on the market.

Never forget the cultural side of translations from one language to another; the quality of the details will ensure
that you will be successful.

Bibliography

CA-Visual Objects® 2.0, 2.5, printed and online documentation. Computer Associates.

Microsoft Knowledge Base. Microsoft Corporation®.

Microsoft MSDN® CD. Microsoft Corporation®.

Microsoft Windows NT 4.0 Resource Kit®. Microsoft Corporation®.

Microsoft Win 32 API documentation. Microsoft Corporation®.

Unicode Inc.
1965 Charleston Road
Mountain View, CA 94043
Phone (415) 961-4189

60 JV165SN

Jean-Paul Bleau is a software developer and consultant. He has been working with computers since 1978, with

dBase II when it was on CP/M, with CA-Clipper
®

 since 1986 and CA-Visual Objects
®

 since the pre-release in

1994. He built specialized software for Fertility Centers to take complete care of electronic patients’ charts in a

health care environment, and he created CGPlus, a complete accounting system for CA-Visual Objects
®

 2.5 and

CA-Clipper
®

. He is also the author of several utilities that share data with accounting packages like Point-of-

Sales written in CA-Clipper
®
. Jean-Paul has worked in the US, Belgium, France, Canada and Africa, where he

has had to deal with different types of taxes and accounting cultures. He has been attending CA-World since

1995. He was a speaker at many CA-World Technicon sessions and CA-World’s eBusiness Solutions in Internet

Time. He is also available to speak at other conferences or for corporate training. Jean-Paul can be reached by

email at JPBleau@qc.aira.com

Copyright Notice

No part of this paper may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage and retrieval system, without permission in
writing from the author.

Trademark Acknowledgements

CA-Visual Objects 2.5® is a registered trademark of Computer Associates. All other product names and services
identified throughout these notes are trademarks or registered trademarks of their respective companies. They are
used throughout these notes for education only and for the benefit of such companies. No such uses, or the use of
any trade name, are intended to convey endorsement or other affiliation with the notes.

COPYRIGHT NOTICE FOR MICROSOFT CONTENTS. Copyright © 2000 Microsoft Corporation, One
Microsoft Way, Redmond, Washington 98052-6399 U.S.A. All rights reserved.

TRADEMARKS. Microsoft, Windows, Windows NT, MSN, The Microsoft Network, Home Essentials,
HomeAdvisor, Sidewalk, Expedia, Encarta, Bookshelf, PowerPoint, BackOffice, Outlook, FrontPage, Computing
Central, MapPoint, CarPoint, Hotmail, WebTV, Advisor FYI, ZoneMatch, ZoneMessage, and/or other Microsoft
products referenced herein are either trademarks or registered trademarks of Microsoft. The names of actual
companies and products mentioned herein may be the trademarks of their respective owners. The example
companies, organizations, products, people and events depicted herein are fictitious. No association with any real
company, organization, product, person, or event is intended or should be inferred.

